September 2002

Revised September 2002

FAIRCHILD

SEMICONDUCTOR®

100ELT23 5V Dual Differential PECL to TTL Translator (Preliminary)

General Description

The 100ELT23 is a dual differential PECL to TTL translator operating from a single +5V supply.

The dual gate design of the 100ELT23 makes it ideal for applications which require the translation of a clock and a data signal.

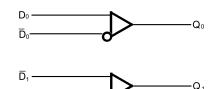
The 100 series is temperature compensated.

- Features
- Typical propagation delay of 3.5 ns
- TTL output drive: $I_{OH} = 24 \text{ mA}$; $I_{OL} = -3 \text{ mA}$
- Flow through pinout
- Q Output will default to a LOW with the inputs left Open
- Internal pull-down resistors on inputs
- Fairchild MSOP-8 package is a drop-in replacement to ON TSSOP-8
- Typical I_{CCH} of 23 mA, I_{CCL} of 26 mA
- Meets or exceeds JEDEC specification EIA/JESD78 IC latch-up test
- Moisture Sensitivity Level TBD
- ESD Performance: Human Body Model > TBD Machine Model > TBD

Ordering Code:

Order Number	Package	Product Code	Package Description				
	Number	Top Mark					
100ELT23M	M08A	KLT23	8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow				
100ELT23M8 (Preliminary)	MA08D	KT23	8-Lead Molded Small Outline Package (MSOP), JEDEC MO-187, 3.0mm Wide				

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.


Connection Diagram

Logic Diagram

D,

DS500774

Pin Descriptions

Pin Name	Description
$D_0, \overline{D}_0, D_1, \overline{D}_1$	PECL Differential Inputs
Q ₀ , Q ₁	TTL Outputs
V _{CC}	Positive Supply
GND	Ground

© 2002 Fairchild Semiconductor Corporation

100ELT23

Absolute Maximum Ratings(Note 1)

PECL Supply Voltage (V _C	0.0	0.0V to +7V					
Input Voltage (V _I) $V_I \le V_{CC}$ 0.0V to + 6V							
Storage Temperature (T _{ST}	+ 150°C						
Thermal Resistance							
Junction to Ambient (θ_{JA})	SOIC	0LFPM	TBD				
		500LFPM	TBD				
Junction to Case (θ_{JC})	SOIC	std bd	TBD				

MSOP

Junction to Ambient (θ_{JA}) MSOP

Junction to Case (θ_{JC})

Recommended Operating Conditions

Power Supply Operating ECL Input Voltage V_{CC} = 4.75V to 5.25V \$0.0V\$ to V_{CC}

 $\label{eq:FreeAirOperating Temperature (T_A) $-40^{\circ}C$ to +85^{\circ}C$ Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.$

PECL DC Electrical Characteristics $V_{CC} = 5.0V$; GND = 0.0V (Note 2)

OLFPM

std bd

500LFPM

Symbol	Parameter	−40°C		25°C			85°C			Units	
	Falameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
VIH	Input HIGH Voltage (Single Ended)	3835		4120	3835		4120	3835		4120	mV
V _{IL}	Input LOW Voltage (Single Ended)	3190		3525	3190		3525	3190		3525	mV
VIHCMR	Input HIGH Voltage Common	2.2		5.0	2.2		5.0	2.2		5.0	V
	Mode Range (Differential) (Note 3)	2.2		5.0	2.2		5.0	2.2		5.0	v
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.5			μA

TBD

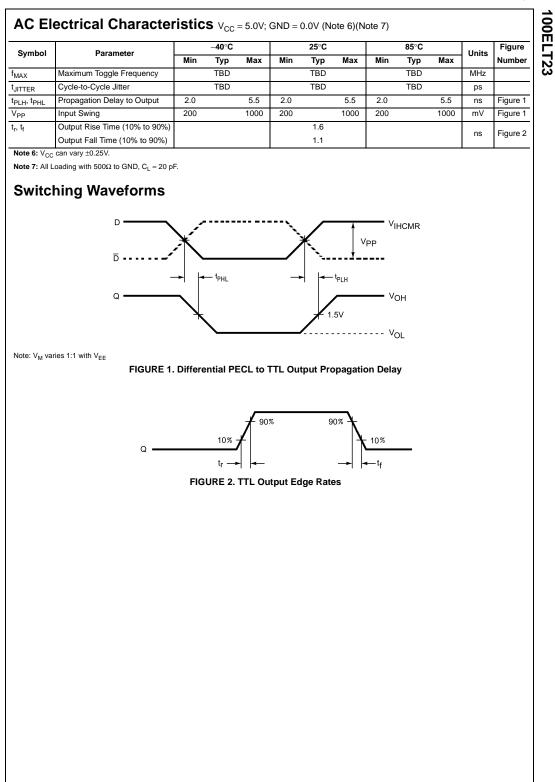
TBD

TBD

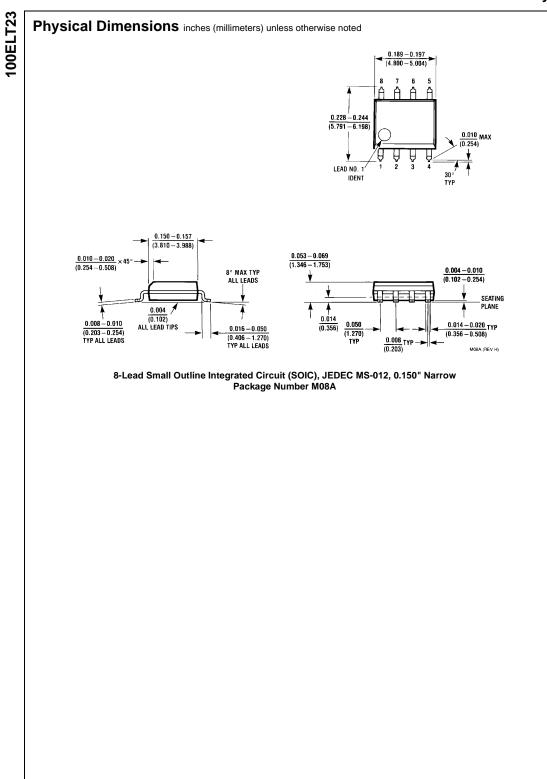
Note 2: V_IH and V_IL values vary 1 to 1 with V_CC. V_CC can vary $\pm 0.25 V.$

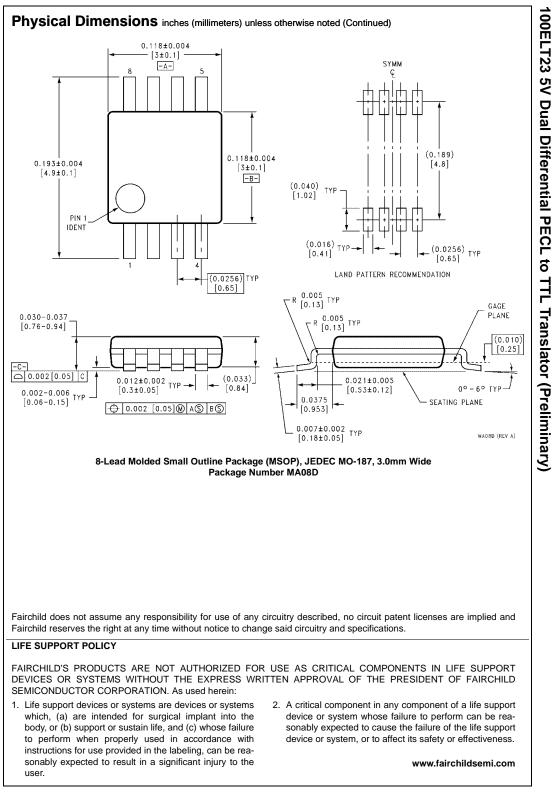
Note 3: $V_{\rm IHCMR}$ minimum varies 1 to 1 with GND. $V_{\rm IHCMR}$ maximum varies 1 to 1 with $V_{\rm CC}.$

Note: Devices are designed to meet the DC specifications after thermal equilibrium has been established. Circuit is tested with air flow greater than 500LFPM maintained.


TTL DC Electrical Characteristics $V_{CC} = 5.0V$; GND = 0.0V (Note 4)

Symbol	Parameter	'A -	= -40°C to 8	35°C	Units	Condition
-	Faranieler	Min	Тур	Max		Condition
√ _{он}	Output HIGH Voltage	2.4			V	I _{OH} = -3.0 mA
V _{OL}	Output LOW Voltage			0.5	V	I _{OL} = 24 mA
ССН	Power Supply Current (Outputs set to HIGH)		23	33	mA	
CCL	Power Supply Current (Outputs set to LOW)		26	36	mA	
OS	Output Short Circuit Current (Note 5)	-150		-60	mA	


Note 4: V_{CC} can vary ±0.25V.


Note 5: For I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise, prolonged shorting of a HIGH output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

Note: Devices are designed to meet the DC specifications after thermal equilibrium has been established. Circuit is tested with air flow greater than 500LFPM maintained.

www.fairchildsemi.com

www.fairchildsemi.com